

French-Swedish Workshop - Smart Cities and Mobility

Water Resource Sustainability: Smart Water Networks versus Low-tech Solutions

Tarik BOUROUINA,

ESYCOM-Lab, ESIEE Paris-UPEM-CNRS, Université Paris-Est

PARIS-EST Sustainable Cities / Sustainable Water Ressources

Water Global Challenges

• **2.1 billion people** cannot access safe drinking water in their home

WATER QUALITY

• **2 million people** die each year due to poor water-quality

Source: World Health Organization, UN and UNICEF

Drinking Water Networks: The Need for Monitoring

WATER CONTAMINATION

Chemical, Biological and Particulate contaminants

WATER LEAKAGE

• 6% up to 63% of the produced water is lost due to the leakage in distribution infrastructure.

Source: Water and Wastewater Utility Data- 2nd edition

Water Cycle from production to Distribution

Some Challenges towards Monitoring Drinking Water Networks:

- Need for measurement of <u>Multiple Physical</u>, Chemical and Biological parameters
- Need for Mapping all those parameters all over the water network
- Needs for Low-cost Multi-parameter sensors for large scale dissemination
- Needs for dedicated IoT platforms

H2020 project - 2015-2018 4M€ grant agreement No 644852

Delivering an autonomous,

highly multifunctional MEMS- and nano-enabled

sensor node for adaptive and cognitive

drink & waste water quality monitoring.

Cheaper (X25 decrease) Smaller (X10 decrease) Reconfigurable (wireless, on-chip data..) 9 parameters in one chip

www.proteus-sensor.eu

PARIS-EST Illustration of Technology Upscaling From the Nanosensor to the City

(1) From Prototype to Large-Scale Production of Low-Cost Sensors An illustration of ESIEE's Know-How

(2) From Concept to Field deployment An illustration of IFSTTAR's Know-How

MEMS Sensors & Smart CITIES

1

ESIEE-Connect (IoT) PIA 2 Cleanrooms for Sensor Prototyping

Sense city

SENSE-CITY : EquipEx PIA 1

World-class Experimental platforms

PARIS-EST From prototype to Batch Fabrication

Fabrication collective

Tests in SENSE-CITY Drink water loop

□ Typical scenarios:

PARIS-EST

9. NEVERSITÉ 🚥

- Water Leakage
- Excessive chlorine concentration

□ Added value of further numerical modeling:

- Sensor data are digested by the models

 Reverse modeling allows precise localization of accidental events almost real-time

> 9-parameter Sensing Micro-chip

Sensor NODE in the water network

City of ALMADA, Portugal 175000 inhabitants

Data recorded using our PROTEUS PROBES

Parameter	Unity	Average	Minimum	Maximum
Calcium	mg/L Ca	33.44	31.40	35.40
Magnesium	mg/L Mg	8.60	6.00	10.00
Total hardness	mg/L CaCO ₃	154.00	110.00	440.00
Free Chlorine	mg/L Cl	0.39	0.08	0.55
Condutivity (20°C)	µS/cm a 20⁰C	433.40	411.00	457.00
Nitrates	mg/L NO3	14.29	8.79	15.85
pH (20°C)	Escala Sorënsen	7.12	6.99	7.39
Temperature	°C	20.07	13.50	26.20
Pressure	Bar		1.00	5.50
Velocity	m/s		0.04	1.02
Flowrate	m³/s		0.80	18.40

LOW-COST INNOVATIVE TECHNOLOGY FOR WATER QUALITY MONITORING AND WATER RESOURCES MANAGEMENT FOR URBAN AND RURAL WATER SYSTEMS IN INDIA

From Proteus to LOTUS

Co-creation of innovative low cost technologies for India's water challenges

Dr. Bérengère Lebental, Ecole Polytechnique, IFSTTAR, CNRS, France

New Delhi, February 13, 2019

LOTUS is co-funded by the European Commission under the Horizon 2020 research and innovation programme under Grant Agreement N° 820881 and by the Indian Government, Ministry of Science and Technology.

The NANO-4-WATER Programme

WATER TECHNOLOGIES: « High Tech » versus « Nature-based » Solutions Information and Communication Technologies for Environment Science (Water)

Objective 1 – Comprehensive physical and chemical multi-parameter for smart management of drinking water networks

- Field-testing in SENSE-CITY platform of hetero-integrated multi-parameter sensors
- Nano-sensors for heavy metals detection: from lab prototypes to field-test sensors

Objective 2 – Opto-fluidic technologies for detection of particulate and biological contamination of water

- Particulate matter pre-concentration and analysis based on optofluidic devices
- Detection of specific biological contamination in drinking water based on deep learning approaches

Objective 3 – Decentralized production of natural resources: water, energy and nutrients

- Solar-energy and gravity-driven dual-approach for autonomous water purification
- Urine recycling for production of both energy and nutrient for urban agriculture

NANO-4-WATER

An open Academic Research collaboration platform

5 laboratories within Université Paris-Est: ESYCOM, LISIS-IFSTTAR, LEESU-ENPC, LIGM, ICMPE

5 international partners: Univ. Minnesota (USA), NTU (Singapore), Ain-Shams Univ. (Egypt),

North Western Polytechnic Univ. (Xi'An, CHINA) and Hong-Kong Polytechnic University (HONG-KONG)

UNIVERSITY OF MINNESOTA

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

2 New partners in 2019: LIED Lab. @Paris Diderot and PMMH Lab. ESPCI

Co-Funding: NTU-Singapore and Fondation ENS

HARVESTING WATER from RAIN, FOG and DEW

Nilsson, T., Vargas, W.E., Niklasson, G.A., Granqvist, C.G., Condensation of water by radiative cooling. Applied Sol. Energy 5 (1994)

G. Sharan, A.K. Roy, L. Royon, A. Mongruel, D. Beysens Dew plant for bottling water, Journal of Cleaner Production 155 (2017)

https://inhabitat.com/worlds-largest-fog-harvesterproduces-water-from-thin-air-in-the-moroccan-desert/

— PARIS-EST (1) DEW WATER HARVESTING PLANTS

Experience of French Partners (Daniel BEYSENS et al., ESPCI)

 Typical implementations of Dew water harvesting plants involving the French team of Daniel Beysens.

> **D. Beysens**, *Dew Water*, River Publishers, Aalborg (2018)

• Water Harvesting is the first block of the proposed architecture for the Water Panel

DARIS-EST Water Purification by Solar Energy 1 – Steam Generation

Steam generation under one sun enabled by a floating structure with thermal concentration G. Ni, G. Li, S.V. Boriskina, HX Li,WL Yang, TJ Zhang and Gang Chen, **Nature Energy, 2016**

16

2.Porous structure: capillary effect

Water Purification with Zinc Oxide (ZnO) Photocatalysis

Y.G. Habba, M. Capochichi-Gnambodoe, Y. Leprince-Wang*, "Applied Sciences, 7 (11) (2017) 1185

UNIVERSITÉ - PARIS-EST

Ultra-fast WATER PURIFICATION of Dissolved VOCs in a ZnO Nano-enabled Microfluidic Reactor

Initially, VOCs are diluted in water @ 10 ppm concentration each

 After only 5 seconds transit time in the microfluidic platform more than 95% of the VOCs diluted in water were degraded by photocatalysis with no chemical by-product according to favorable scaling laws

I. Azzouz,, Y.G. Habba, M. Capochchi-Gnanbodoe, F. Marty, Y. Leprince-Wang, T. Bourouina, Nature Microsyst. Nanoeng (2018)

